Seminar on characteristic cycles, after Takeshi Saito
Spring semester 2020 - Wednesday 10-12 - UZH Y27 - Room H25
This reading seminar is devoted to the study of characteristic cycles defined by Takeshi Saito.
Detailed program of the talks : pdf
List of the talks
- (11/03, Artem) Swan conductor and Grothendieck-Ogg-Shafarevich formula
- (18/03, Arthur) Semi-continuity of the Swan conductor
- (25/03, Emil) Conical subsets of the cotangent bundle
- (01/04) no talk
- (08/04, Nicolas) Local acyclicity and micro-support
- (15/04) no talk (Easter break)
- (22/04, Dahli) Singular support
- (29/04, Lorenzo) Milnor formula and isolated characteristic points
- (06/05, Alberto) Characteristic cycle
- (13/05, Doosung) Characteristic class
- (20/05) Pull-back of characteristic cycles
- (27/05) The index formula
References
- A. Beilinson. Constructible sheaves are holonomic. Sel. Math. New Ser.., 22(4):1797--1819, Oct. 2016. (pdf)
- P. A. Castillejo. Grothendieck-Ogg-Shafarevich formula for l-adic sheaves. (Master thesis), 2016 (pdf)
- P. Deligne. La formule de Milnor Groupes de monodromie en géométrie algébrique II, Exposé XVI, Springer-Verlag, Berlin-New York, Lecture notes in Mathematics, Vol. 340, 1973 (pdf)
- L. Kindler and K.Rülling. Introductory course on l-adic sheaves and their ramification theory on curves. arxiv 1409.6899., 2014 (pdf).
- G. Laumon. Semi-continuité du conducteur de Swan (D'après P. Deligne). The Euler-Poincaré characteristic, Astérisque, Soc. Math. France, Paris, Vol. 83:173--219, 1981 (pdf).
- T. Saito. The Characteristic cycle and the singular support of an etale
sheaf (Notes by L. Kindler), (pdf).
- T. Saito. The characteristic cycle and the singular support of a constructible
sheaf, Invent. math.207(2):597--695, Feb. 2017 (pdf).
- T. Saito. Characteristic cycle of a constructible sheaf, Notes from the summer school Arithmetic geometry in Cartage, 2019 (pdf).