Seminar on characteristic cycles, after Takeshi Saito


Spring semester 2020 - Wednesday 10-12 - UZH Y27 - Room H25

This reading seminar is devoted to the study of characteristic cycles defined by Takeshi Saito.


Detailed program of the talks : pdf

List of the talks
  1. (11/03, Artem) Swan conductor and Grothendieck-Ogg-Shafarevich formula
  2. (18/03, Arthur) Semi-continuity of the Swan conductor
  3. (25/03, Emil) Conical subsets of the cotangent bundle
  4. (01/04) no talk
  5. (08/04, Nicolas) Local acyclicity and micro-support
  6. (15/04) no talk (Easter break)
  7. (22/04, Dahli) Singular support
  8. (29/04, Lorenzo) Milnor formula and isolated characteristic points
  9. (06/05, Alberto) Characteristic cycle
  10. (13/05, Doosung) Characteristic class
  11. (20/05) Pull-back of characteristic cycles
  12. (27/05) The index formula


References
  1. A. Beilinson. Constructible sheaves are holonomic. Sel. Math. New Ser.., 22(4):1797--1819, Oct. 2016. (pdf)
  2. P. A. Castillejo. Grothendieck-Ogg-Shafarevich formula for l-adic sheaves. (Master thesis), 2016 (pdf)
  3. P. Deligne. La formule de Milnor Groupes de monodromie en géométrie algébrique II, Exposé XVI, Springer-Verlag, Berlin-New York, Lecture notes in Mathematics, Vol. 340, 1973 (pdf)
  4. L. Kindler and K.Rülling. Introductory course on l-adic sheaves and their ramification theory on curves. arxiv 1409.6899., 2014 (pdf).
  5. G. Laumon. Semi-continuité du conducteur de Swan (D'après P. Deligne). The Euler-Poincaré characteristic, Astérisque, Soc. Math. France, Paris, Vol. 83:173--219, 1981 (pdf).
  6. T. Saito. The Characteristic cycle and the singular support of an etale sheaf (Notes by L. Kindler), (pdf).
  7. T. Saito. The characteristic cycle and the singular support of a constructible sheaf, Invent. math.207(2):597--695, Feb. 2017 (pdf).
  8. T. Saito. Characteristic cycle of a constructible sheaf, Notes from the summer school Arithmetic geometry in Cartage, 2019 (pdf).